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Optical anisotropy of nanotube suspensions
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A semimacroscopic model of an optically anisotropic nanotube suspension is derived perturbatively
from Maxwell's equations in a dielectric medium. We calculate leading-order expressions, valid in
the dilute and semidilute limits, for thiatrinsic and form contributions to the complex dielectric
tensor in terms of the volume fraction, mean orientation, aspect ratio, optical anisotropy, and optical
contrast of the nanotubes. The birefringence and dichroism are derived explicitly to leading order in
fluctuations, and the connection with depolarized light scattering is established. The results are
generalized to include tube deformation. Z004 American Institute of Physics.
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I. INTRODUCTION sions and melts. The approach is reminiscent of the general
theory of flow-induced optical anisotropy in dilute polymer

Itis well known that flow can induce optical anisotropy sojutions derived by Onuki and Diand it expands on a

in macromolecular fluids and colloidal suspensions in theyrevious treatment of depolarized light scattering from car-

form of birefringence and dichroisfr? As first demonstrated bon nanotube suspensichsVe derive general expressions

by Peterlin and Stewartthese effects separate naturally into for poth theintrinsic andform contributions to the dielectric

two distinct parts; anntrinsic contribution arising from the  tensor, and we derive leading-order expressions for the bire-

orientation of optically anisotropic polymer segments or parringence and dichroism. The connection to depolarized light

ticles, and gorm contribution arising from anisotropy in the scattering is established and the results are generalized to
segmental or density correlation function. The experimentajycjude tube deformation.

techniques of flow birefringence and flow dichroism have
proven to be powerful tools for studying the structural and
dynamic properties of flowing polymer melts, polymer solu- Il. INTRINSIC CONTRIBUTION

tions, and anisotropic suspensions, which in turn has contrib-  For a quasistatic suspension Kf optically anisotropic
uted to recent technological advances in the engineering anghnotubes in an optically isotropic solvent of dielectric con-
flow processing of complex fluids. stant ¢4 illuminated by an incident electric fieldE(r,t)
Recently, carbon nanotubes have emerged as novel ma:Eoei(k~r—wt), wherek®=g.w?/c? andk points along the
terials with potential applications in a host of advanceddirection of propagatiofisee Fig. 1, the macroscopic dielec-
technologied. Nanocomposites engineered from polymerstric tensor can be defineda
and carbon nanotubes, for example, offer the promise of . . (ot ot)
plastic materials with enhanced structural, thermal, elec- D(T:D)=%-E(r,1)=%-Ece ' @
tronic, and optical properties. Efficient bulk processing ofwhere the tenSOEZEi’V::L)’ZMSMV)A(V is homogeneous. If
such composites will depend in part on a detailed undertocates a segment of a nanotuldér), then the spatially
standing of the response of carbon nanotube suspensions ayglrying amplitude of the displacement field induced &
melts to flow. As colloidal particles, nanotubes are also A PO
somewhat unique and intrigEing, in that they straddle the D) ={ayA(N)A(r) + e, [1=A(rA(r) 1} Eo, @
interface between semiflexible polymers and microscopic fiwhere the locatomplexdielectric constants; and«, arise
bers. Given the significant optical contrast between carbofrom polarization and absorption along and normal to the
nanotubes and most typical polymers, it is reasonable to execal symmetry axis of the nanotube, respectively, and
pect that such suspensions will exhibit reasonably strong ogthe identity tensor. The parameters and «;, appear in the
tical anisotropy, making them well-suited to rheo-opticalformulas for the depolarized scattering of monochromatic
techniques.Applied to such novel soft materials, the meth- light from nanotube suspensionsEquation (2) defines a
ods of flow birefringence and flow dichroism might offer local dielectric tensor as
new physical insight into both fundamental flow-structure - PN NN
relatign;/hips in an?sotropic complex fluids, as well as funda- 8(N)=aANA(r) + e, [1=ADAM], 3
mental information about the optical properties and opticawhenr falls within a tube anc(r)=e¢1 otherwise. Intro-
anisotropy of the nanotubes themselves. ducing the spatial averagé)=V~1[drz(r), whereV is the
In this paper, we present a semimacroscopic calculatiosample volume, we obtain thetrinsic part of the dielectric
of the complex dielectric tensor of carbon nanotube suspertensor

8o=(€)=dle(NiA)+a (1-(AA))]+(1- ¢)851:(4)

aE|ectronic mail: erik.hobbie@nist.gov
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Multiplying by e~ ™" to remove the harmonic spatial depen-
dence and taking the spatial average, this term averages to
zero® and the first non-vanishing correction @ is thus
second order ig(r), being

Se(r")
dr'G(r,r')V'XV’'x -fdr”G(r’,r”)V”XV”
FIG. 1. A cartoon showing an aligned nanotube suspension. The suspending &s
medium is of uniform dielectric constant . The incident fieldEq(r,t), is SE(r")
linearly polarized along the “slow” axis of the suspension. After transmis- X . Dg , (8)
sion, the polarization is unchanged but the amplitude is attenuated by ab- Es

sorption. An incident field linearly polarized along the “fast” axis, or at 90°

to the shown scenario, is altered in a similar manner. Light linearly polarizeuWhICh becomes

at an angle between these directions will also emerge attenuated, but with SB(r 3 5‘(r”)

polarization that is elliptical. We seek to calculate the effective dielectric dr’ € . drneik-r” & B0 Eo- [V'V"

tensor of the suspension. es &q 0°=0
—(V3"1]G(r' ,r") - [V'V' = (V3 '1]G(r,r'). 9

Resolving the singularities in the Green’s functiérisl_ro—
ducing their Fourier representation, multiplying ley %"
and taking the spatial average, the correctio® jas

where ¢ is the volume fraction andf,f)=N"1Z A . As

in a previous derivation of the light-scattering amplitioee
neglect contributions of linear and higher order in the differ-
ence between the end-to-end vector of fttrenanotube and _ (8E% _ 1 ~ -
its body directorfi , which is equivalent to assuming that the &1~z "€ (573 f daT(k—a) %o
tubes are nominally straight. The results will be generalized S

to include deformation. —qq+k31
el (10)
q°—(k+is)
where the tensor
Il. SPATIAL FLUCTUATIONS
- . ,
The earlier derivation gives just the leading-order part of T(q)—f dre~'%(5(r)- 68(0))/es (11)

the complex dielectric tensor. In general, there will bei related to the structure factor. Equatici) is anal
higher-order contributions arising from the spatial variations > 'c'at€d 10 the structure factor. Equa S anajogous

S55(r)=%(r)—(3). Following Jackson's treatment of Ray- to the expression derived by Onuki and Paind is quite

leigh scatterind, we obtain these terms perturbatively from generzal.z '.A‘S Qerlved h.erel, It contains two terms of
the vector wave equation f@, which can be derived from O(8%/e5); a h|gher-ordemtr|n5|c correctloh arising purely
Maxwell’'s equations in a dielectric medium. In the harmonic ToM mean-square fluctuations and a leading-ofdem cor-
approximation in which all fields have a time dependence O]r_ectlor_l involving de_n5|ty cor_relatlons |denf[|cal_ _to that de-
the forme'!, this becomes an inhomogeneous vector Helm-m/ed n R_e_f. 6. Th_|s result 1S somewhat_ Intuitive, as one
holtz equation could envision particles I_ack_mg any spatlal _correla'qon that
could still alter the polarization of incident light, with the
(V2+Kk?)D=—-VXVX(D—¢&E). (5) physical scenario being optically anisotropic particles too
small to visibly scatter. More quantitatively, for particles
Following Jacksori the term in parenthesis on the right-hand lacking any segmental correlation (8% (r)- 58(0))
side 'Ef Eq.(§) is Writt_en asode(r)-Doleg, Wherg DOfEO ~Iimgﬂo(é'éz)e‘rz/zézocIimgﬂo(ﬁé2>§35(r), and the second
-Eoe"™". As in scattering theory, a formal solution is then g in Eq.(10) vanishes, implying that for such “formless”
obtainedvia successive iterations in terms of the HeImholtz anotubes the leading-order intrinsic correctiof gds sim-
Green’s function ply proportional to the mean-square deviationhe full ex-

iKlr—r| pression for the dielectric tensor is thus

1 € 1 ela (=)
G(rr')=—— = 3qu 2 T2 (5%2) 1
4a [r=r'|  (2m) g°—(k+is) z~l14 + f F(k—
©) e~1{1 —2—8S —5(277_) dgT(k—q)
where the positive infinitesimalis needed to ensure causal- —qq+k31 _
ity in the displacement field)(r,t).® The first-order correc- g% —(k+is)? gty (12

tion is
where we have exploited that fact tf&f is symmetric.
J'dr’G(r,r’)V’><V’><é‘é(r')-D(’)/sS
IV. A USEFUL EXPANSION
=fdr’ﬁé(r’)~(D(’)/sS)~[V’V’—(Vz)’l]G(r,r’).
Before deriving specific results applicable to limiting
(7)  cases and scenarios of practical importance, it is useful to
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recast the earlier results more explicitly in terms of the vol-polydispersity. Otherwise it will be an approximation. The
ume fraction of nanotubes. In this manner, the mean dielecralidity of Eq. (20) also depends on the decoupling
tric tensor is N

N
~ PN 2../a A 2
Fo=eslt d[(a—a, {AR)+(a, —e)l]=el+ ¢£03) 21 Ay |fi(a)] <n|n|>241 [fi(a)]*+.... (22)
which is reasonable for some director distributions, but will
involve higher-order corrections that we neglect here but
(32 =821+ @[ (a?— a? (AR + (a® —e2)1], (14)  consider at the end of the paper. The full expressiorifor
otherwise exact t®(5%?), is thus

and the mean-square is

from which the mean-square deviation(igs?) = (5%) ~§ _ L
= #B1+ ¢7Bo, where Freglt ¢[730+%.[1+T(k)]1 +¢2[%+ '818'2'80
B1= (= ay)(ay+a, —2e(fy)+ (@, —e91 (19 ) T

and .[1+T(k)]}+¢3[ﬁ—12@+... . 23
_ S
Bo=(ay— a )R>+ 2(a—ay)(a —e)(Af) where
+(aL_8S)21' (16) . 1 _qq+ k21
For the purpose of computing the two-point density correla- (k)= (2m)% f dq(lf,(k—q)|2>[q2_(k+ig)z - (29

tion function, we can write
There are terms of relevant orderdrthat we have neglected

Se(r)=(ay—a )A(r)N(r)+(a, —&41l, (17)  in Eq. (23), but these will be of higher order in the optical
anisotropy and contrast, being 6f(58%) or higher. In the

h locat I t of tube, wik(r)=0 P L
whenr locates an element of a nanotube, wifh(r) long wavelength K—0) limit, Eq. (24) simplifies to

otherwise. Introducing the Fourier representatioda(r), it

is then easy to show that(q) =V 168,%/eZ, where the ~ 1 o
scattering amplitude tensas lo=— 2% dg(f,(a)|)aq. (25
55(10(2 [(ay— )+ (. — &) 1]e-ia7j, (19) In this approximation, the imaginary part of E§4)—which
]

arises from the pole structure of the integrand and, in non-

} ) ) ] absorbing materials, gives rise to turbidity and what is
the indexj running over all of the scattering elements of the ynown as form dichroisni* in anisotropic systems—

system. 'I;)he_connection to depolarized light scattering is NoWapishes. Physically, this is equivalent to assuming that ab-
apparent with each of the four structure factdrseing the  sorption dominates scattering, where the latter scalég As
square modulus of the corresponding Cartesian projection Cﬁepending on the size of the tubes, this approximation will

the tensoréz . Following the analysis in Ref. 5, we decom- e reasonable for dilute to semidilute carbon nanotube sus-
pose this tensor into inter and intratube contributions to Ob'pensions. As evidence for this, we measured the absolute

tain turbidity (\=632.8 nm) due to scattering in nonabsorbing
N spherical colloidal suspensions prepared at a fixed volume
%q:;l [(ay—a AN+ (a, —eg)l]e 9 fraction of ¢o~10"3. For aqueous latex suspensions of di-

ameterd=11 um, 230, and 40 nm, the measured turbidity is

. 0.22, 0.59, and 0.12 mnt, respectively, the turbidity of the

xf dr'e-iar’, (199  empty quartz cell being 0.07 mim. For all three of these

vl suspensionsAn/ng~(1.6—1.33)/1.33<0.2, and the 2-mm-

wherefy, r,, andv, are the director, center of mass, and thick samples were visually transparent. In contrast, a sus-

volume of thelth nanotube, respectively, amd locates the pension of multiwalled carbon nanotubé€sIWNTs) dis-
volume elementlr’ with respect to the center of masg,  Persed in toluene at the same volume fractiaith a mean
For reasonably monodisperse nanotubes with random cefitbe length ofL =10 um and a mean tube diameter o 2

troids, r,, we obtain =50 nm) exhibits an attenuation of 0.95mfm In the
5 5 2-mme-thick quartz cell, the MWNT-toluene suspension had a
T(a)=¢B(Ifi(a)|?)/vel, (200 black hue but was also visually transparent. The index of

refraction of toluene is of order 1.5 and previous reflectivity
measurementssuggest that the approximate modulus of the
B g complex MWNT refractive index is of order 1.6. Comparing
fi(a)= L dre 2D the measured turbidity of the MWNT suspension with that of
' the 11 um and 40 nm spherical latex suspensions—which
is aform amplitudethat depends on the shape and orientationspan the same physical dimensions and have rougklytg
of the Ith tube. The earlier expression fd(q) will be pre-  optical contrast—we see that absorption accountsiféeast
cise in the dilute and semidilute limits, where the distribution85% of attenuation in the MWNT suspension, consistent
of centroids is essentially random, and when there is limitedvith the earlier approximation. At this volume fraction, we

wherev is the average volume and
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with the MWNT suspension being well into the semidilute —
regime. \
V. LIMITING CASES (a) ///

By dispersing the nanotubes in a viscoelastic polymer
melt or solution, flow can be used to orient the tubes, where
the direction and extent of orientation depend on the type of
flow, the tube aspect ratf3, the fluid elasticity:®> and, for

note that (4fr)@o(L/d)?>~50 and (44r)po(L/d)~0.25, — l \

semidilute suspensions, hydrodynamic interactférs.For (b)

dilute and semidilute suspensions in purely viscous fluids

under simple steady shear flow, the distribution of fiber ori- — \\
entations is broadly peaked along a direction very close to y 7 —

the flow axis'?~*°In viscoelastic fluids under shear, the ob- ’\ —
served orientation is somewhat more complicated. For dilute /\
suspensions of fibers in weakly elastic fluids, or at a small ee— —
Deborah numbefdefined as the product of the shear rate and (C) /
a linear-viscoelastic relaxation timethe steady-state orien- X

tation is along the direction of vorticity, perpendicular to the ) ) ) ) )

lane defined by the flow and velocitv-aradient directitfs. IG..2.' A_cartoon sho_wmg three different scenarios of tube quentathn. The
P . y . . . y-9 X axis indicates the direction of flow, and in each case the director distribu-
At higher concentrations in such fluids, however, both flowtjon is assumed to be symmetric around thend z axes. An isotropic
and vorticity alignment have been reporféd.G In contrast, suspensior{a) exhibits no anisotropy, while a perfectly aligned suspension
for dilute and semidilute suspensions in highly elastic fluids. e proad number of physically
or at a hlgh D,eborah . number, 3”9”9 ﬂOW gllgnment ISrelevant situation-s. For suspensions under shear flow, tubes V\ﬁll)ée in {)eri—
observed?*’ while for dilute suspensions in fluids of inter- ogic Jeffery orbits around the axis, and the director distribution function
mediate elasticity, the fibers orient at well-defined angles ircan be computed as either a temporal average over a moving ensemble
the flow-vorticity plane1.7 Although the situation is complex, con_taining the sarrle tubes o’r’ as a temporal average over a fixed spatial
the most striking and relevant feature is a deviation from the oo with each “snap-shot” of the ensemble containing a new set of
stress-optical rule in its usual form, which states that the
direction of greatest optical anisotropy is along the direction
of principle strain, which for shear flow is at 45° in the
flow-gradient plané:®*® In contrast, at least for nanotubes and
that can be modeled as long stiff fibers, we would expect that
in many cases the dielectric tensor will be diagonal in the
orthogonal coordinate system defined by the flow field. Thevhere&? =, x/|A X %| and&?=xx &". To proceed fur-
dynamic nature of the tube orbits and, at low Peclet numbeither, we note that for ease of computati@md to a reason-
thermal fluctuations will both influence the steady-state disably good approximation, particularly in the presence of
tribution. polydispersity we can model the square of the functions

We can thus cover a broad range of physically relevanappearing in Eq(26) with Gaussians as

;ltuat|qns _by .conIS|der.|ng the t.hre(_a scenarios in Flg. 2. An SirB(x) Ji(y) 1 X2y
isotropic distribution[Fig. 2(@)] is trivial, since there is no e —ex% -2
anisotropy in Eq(23), and the idealized scenario in Figh? X y 4 3 4
can be viewed as a limiting case of the general situationvith x=L,q,/2 andy=a,q, , from which we obtain
depicted in Fig. &) in which the width of the angular dis- 201 2
tribution tends to zero, so we focus on the distribution in Fig. (|f|(q)|2)~02{ 1— Ax L_‘W +a(1- zﬂ)}
2(c). The form amplitude of a tube of length and radius 41 3
a,, centered at the origin with its directéy pointing along

9’ —[q, - &M12+[q, - &7 cosd—ay,sin 6,12, (28)

+..., (29

: 4 q2 L2
the x axis, is —? a2(1+l’[1)+?(1—¢) +...
sin(L0y/2) Jy(a4q,)
fi(q)=2v, (L,0./2) aq, (26) %Uzexq_(qux)z_(flch)z]y (30)

whereJ, (y) is the Bessel function of the first kind of order Where we have introducegt=(cos f)—equal to 1 for per-
1, q, =q,%+q,y, and UI:7Ta|2LI- This expression[Eq. fect alignment and 1/3 for a random distribution—and we

(26)] can be transformed to the general situation in which thd'ave approximated the truncated series with a Gaussian. The
tube axis makes an angl with the x axis by a rotation, Ccorrelation lengths appearing in EQO) are
which leads to the substitutions §f=[L21,/;/3+ a’(1—y)]/4 (31)

Ox— 0x cosd,+q, - &2 sing, 27  and
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£ =[a%(1+y)+L%(1—4)/3]/8. (32)

The integrals involved in evaluating E(5) are nontrivial,

although by symmetrylis diagonal. We make one more
simplifying approximation by exploiting the fact that for rea-
sonably well-aligned tubes of sufficiently high aspect ratio,

we haveg,> ¢, , in which case (J)x~0 and

To~— (16712 7Y (LIg) (@l € )2(99+22)+.... (39

Finally, we note that for the ellipsoidal model we are consid-
ering

(M) = &%+ 3 (1= ) (99+22). (34

Optical anisotropy of nanotube suspensions 1033

x  v=pR

FIG. 3. The geometry of depolarized flow light scattering, wheie the
polarization of the incident beam amdis the polarization of the analyzer.
For simple shear, the flow direction is along thaxis, the gradient direction

All of the elements of the dielectric tensor are now cast ex-s along they axis, and the vorticity direction is along tieaxis. In previous

plicitly in terms of ¢, ¢, L &, «, , «, andes.

VI. BIREFRINGENCE AND DICHROISM

Because the parametes and ¢ are complex, the di-
electric tensor will contain real and imaginary parts. In the
orthogonal coordinates defined by the principal axe& of
one then hag,,=e,d,,, wheree,, e,, ande; are the three
complex eigenvalues &f. The three complex refractive in-
dices aren,=n,+in’= Je,, with the birefringence and di-
chroism defined as the difference between the largest a

In contrast to polymer solutions, the intrinsic dichroism of a
carbon nanotube suspension will be significant, reflecting th
imaginary component of the polarizability, which gives rise
to absorption. The intensity of light polarized along the di-
rection v will be attenuatedsia exp(—4=n_d/\), whereX is
the wavelength in air and the propagation distance. Split-
ting the 1th eigenvalue of into real and imaginary parts as
e,=e,+ie”, one obtains the exact relations

: [e;+[(e;>2+(e';)2]1’2]1’2
n,=

5 (39
and
_al 12 1\ 271/2) 1/2
n,v,:[ ev+[(ey)2+(ey) ] } | -

wherev=1, 2, 3. For the model derived hem=(¢),, and
e, =(€)yy=(¢),,, with the birefringence and dichroism
An’=n;—n] andAn”"=nj—n], respectively.

Comparison with experiment might require a numerical
computation of the earlier quantities, but for the sake of il-
lustration we explicitly consider only the leading-order con-
tribution here, noting that without some type of small-

contrast approximation, the general expressions become

quite involved. Then
n=ve~est 3oyl(e —a))+i(a]—a])]+... (37)
and
N =ve ~est 1¢(1—P)(aj—al)+i(a]—a])]
+oy (39

from which

publications(see Refs. 5 and 13thex direction is referred to ak and the
z direction is referred to as. We consider scattering in the-z plane, with
the four structure factors given by the four permutations and p. The
shear rate isy=dv,/dy.

An’%%(aﬁ—ai)qﬁ(lﬂ— H+... (39
and

An"=~ %(aﬁ’—ai)gﬁ(l//— D+ (40)

. X . n‘Phe uantity (3/2){y— 1/3) is anematicorder parameter,
smallest values of the real and imaginary parts, respectlvelyb q y 3120 ) b

eing zero for a random distribution and 1 for perfect align-
ment. Equation$39) and(40) will only be rigorously correct

fh the limit of small volume fraction, and for largef one

might need higher-order corrections, evaluatmgand n;
explicitly in terms of the real and imaginary parts of the
diagonal elements of the dielectric tensor. In principle, how-
ever, a direct measure of the optical anisotropy of nanotubes
can be determined from rheo-optical data if the order param-
eter can be measured independently. Conversely, if the opti-
cal anisotropy of the tubes is known, the order parameter can
be determined from a measurement of either the birefrin-
gence or the dichrosim. Analogous versions of E§9) and

(40) are derivedvia alternate approaches by Fuflemd Eq.

(39) is recently derived in the context of rod-like particle
suspensions by Lenstra, Dogic, and Dhbht.

VIl. CONNECTION TO LIGHT SCATTERING

If the tubes have no optical anisotropy, then the light-
scattering intensity is simply proportional ¢, (q)|2). Oth-
erwise, for a given scattering geomethig. 3 there are four
structure factors

S,LLV(Q)OC|§(,(L 5—éq'211|2
= ZI [(a— ai)i,y nn X,

2
+(0[L_83)5,uv]fl(Q)e7iq'rl . (41)

As in Sec. IV, for a random distribution of nanotube cen-
troids this reduces to
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8@ 2 (e = @)% %, XX

+ (@, —e9) 8,7 fi(@)]? (42

In the decoupling approximation E(R2), the four structure
factors have the same anisotropy. Although this approxima-
tion might be appropriate at the level of computing the form
birefringence and dichroism—particularly in light of the
strong intrinsic terms—simple consideration &,,(q)
shows that it is not appropriate for scatteri@gwill always

be isotropic for random distributions b&,,(q) is by defi-
nition anisotropic We thus require a more exact coupling
scheme, and the following approach can be used to refine Eq.
(20). Written out explicitly, the three independent structure 77
factors in thex—z plane are

S@) =V e 220 [|01]*+2 Re( 67 5;)c08 4
+]8,2cod 0]/, (q)|?, (43
SA M=V "Te 22 [|81]7+2 R 87 8y)sirf 6 cos ¢

+8,|% sirf 6, cog ¢ | f1(q)|?, (44)
and

ScAa)=S,4q)

=Vl 2 52|22| cog 6, sir? 6, cog ¢||f,(q)|2,

(45)

whered,=a, — &4, ,=a;— «, , andf,(q) is given by Eq.
(26) with the substitution$27) and (28). Evaluation of Egs.
(43)—(45) is done numerically for a given orientational dis-
tribution, p(9).

Figure 4 shows the computed depolarized structure fac-
tors for an isotropic distribution of nanotubes in the Gaussian
approximation [Eg. (29)] with L=10um, a=25nm,
|6,21£2=0.3, | 5,|?/1e2=0.28, and 2 Ref 8,)/c2=0.58. As
an approximationa, and o are assumed real. Measure- FG. 4. The numerically computed structure factors for an isotropic distri-
ments on alignednetallic single-walled carbon nanotubes bution of nanotubes in the Gaussian approximatigq. (29)], with L
(SWNT9 suggest that there is no absorption normal to the=10xm, a=25nm, |5,|%/e5=0.3, |5,|%/¢5=0.28, and 2 R} S,V

; : : .. =0.58. The width of each scattering pattern is @6~ 1. These parameters
tube axis, with strong absorptlon paraIIeI to the tube <2:8(|S. are chosen to reflect the physical dimensions of the MWNTs used for scat-

For MWNTS.}, WhiCh' prica"y have a larger nymber_Of de- tering and microscopy measuremerig. 5), with the optical anisotropy
fects in their graphitic structure, this absorption anisotropyadjusted to obtain agreement with the data in Fig. 5.

will be present but less pronounced, and we neglect it here as

a first approximation. A comparison between experiment andy,/«, ~1.4, somewhat lower than the lower limit of scat-
theory that accounts for absorption and incorporates a varietiering anisotropy measured for aligned SWNT bundfes.
of rheo-optical measurements will be reported elsewhereThe approximateg ! scattering envelope in Fig. 6 arises
The calculations reproduce the distinctive features of meafrom the tube-like structure of the MWNTSs. For a semiflex-
sured depolarized light-scattering patterns under comparablble chain of arbitrary orientation, the radial density of scat-
conditions(Fig. 5), and a quantitative study of the effect of tering elements ii(r)=rP, whereD=1 is the fractal di-
varying anisotropy is shown in Fig. 6. Assumirg~1.5, mension of the chain. The radial distribution function is thus
8,18,~1.83 impliesa,/a, ~3, somewhat higher than the g(r)ocr*=99n/arecr®=9, from which S(q)«=qP.

upper limit of scattering anisotropy measured for aligned

SWNT bundle€! Increasing 5, with respect tod, (or, V!l TUBE DEFORMATION

equivalently, decreasing,/«,) gives good agreement be- The micrographs in Fig. 5 suggest that the nanotubes are
tween the MWNT data and theory, with the data suggestingnot ideally straight. Tube deformation can arise from a vari-
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FIG. 6. The depolarized structure fact8y,(q) computed for varying an-
isotropy, where the dashed line shows' power-law behavior. Scattering
profiles have been generated for an isotropic distributioh. fl um, a

=1 nm SWNTs(upper curv¢ assumingd, / §;~1.83, and for isotropic dis-
tributions of L=10um, a=25nm MWNTs assuming,/5;~1.83, 1.3,

and 1.03, where the latter gives the best agreement with scattering data in
Fig. 5.

Using the decomposition

(A =4 = 2 AR+, (1)1, (48)

where the body directof, is the dominant eigenvector of
(A;A;); with eigenvalue () and ¢, (1) is the remaining

FIG. 5. Depolarized light-scattering patterns measured for an isotropic se-
midilute (¢~3X10"%) MWNT-polymer suspension with a mean tube
length and diameter comparable to those used in FigL#410um, a
~25nm). The width of the upper right scale bar is g/ . The lower
image is a 208 optical micrograph of the same suspension, with a scan-
ning electron microscopy image before dispersion as inset (width
=1.3um). The scale bar is 1@&m. Due to absorption, individual tubes
appear as shadows on a bright incoherent background, in much the same
way that incoherent light emitted on a dark background creates an image of
a fluorescently labeled deoxyribose nucleic a@A) molecule. As in the
case of fluorescently labeled DNA, the MWNTSs appear to be of larger di-
ameter than they actually are.

ety of sources, including structural defe@ts which case the
deformation is “quenched” onto the tupethe flexure of
extremely long suspended tubes due to thermal fluctuations
in solution, and applied and residual hydrodynamic stresses
acting on tubes in flowing suspensions and melts. The results
derived in the previous sections can be generalized to include
tube deformatiorvia a renormalization of the dielectric an-
isotropy,ay and e, , and a generalization of the form ampli-
tude, f,;(g). As shown in Fig. 7, we can model tht nano-
tube asN, consecutive stepg;{l}=bf;{l}, whereb is the
segment length antd,=bN; is the contour length. The per-
sistence length of the tube can then be defined #$)
wb[l—(ﬁj~ﬁj+1>|]*1, where the bracketsé...); denote an
internal conformational average over thtt nanotube. The
local dielectric tensor of thgth element of this tube is given FIG. 7. To include deformation, we model a tube as the series of consecu-

by Eq_ (3): tive stepsr;=bf; , whereb is the segment length arid=bN is the contour
length. The body directoR, is the dominant eigenvector of the orientation
(= a )RR+ a1, (46) tensor,(f;A;), and the moment tensofir ), where the vector locates an
element of the tube with respect to its centroid. The eigenvalues of the
with the mean dielectric tensor of the tube given by former renormalize the optical anisotropy, while the eigenvalues of the latter
define the ellipsoidal Gaussian envelope that gives a measure of the effec-
(o= )RR +a, 1 (47)  tive shape.
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smaller (azimuthally-symmetric eigenvalue, Eq.47) be- N 2
comes R§=<R2)2< ( bjzl ﬁj) > (57)
(ay=a )LL) =LA +a, + 4 (D(ay—a)]1, _ , o
(49)  is the mean-square end-to-end vector of the chain, which is
simply related to the dominant eigenvalue (of ) defined

where TA;Aj)=2¢, +{,=1. Comparing Eq(49) with the oo jier and Eq(57) can be evaluated in the limit of larde

coarse-grained expression for the same quanmﬁ,ﬁ(l)

o o off - . to obtain
—a; (NN +af (1)1, we obtain expressions for the renor- , .
malized anisotropy of théth nanotube 2 Nb”sinh(b/¢,) —ONbE, = 2L¢ 59

9 coshb/¢,)—1 pomcpe
af(1)= ey + ()@= ) (50 ot
The remaining eigenvalue follows from the mean-square

and transverse displacement

a"(1) = af()= (= a)[(1) = L (D] (50

N
RZ=N"1( > [ro—(ro;-A)AT?), (59
The results of the preceding sections can be generalized - <i=1 o o

FP ff ff .
the substitutionsy,—(a(1)) and a, —(a7(1)), where the wherer ,;=b2!_,f; locates thgth segment of the tube with
brackets denote an ensemble average over the SUSpPensionggect to one of its ends. For stiff chains in which the ma-

The sepond generalizatiop involves th(_a _form gm_plitudejority of segments lie oiR, this can be approximated by
fi(q), as given by Eq(21). Written out explicitly, this is

N
Rfmsz‘lsz (07)=b%&,, (60)

fI(Q):f drefiq'r%f dr{l—iq-r—%(q.r)h_m
v v

(52 where the second step follows from equipartition. Note that

. - , R, vanishes in the limit of largé,, as expected. In a similar
in the limit of smallq. Integrating Eq(52) term by term, the manner, it is straightforward to show that fénA.), ¢,
linear contribution vanishes, giving the Gaussian approxima=_ o) (R /b)—1 andZ, ~1— (1N)(R, /b) I

g g/d)-

tion
IX. CONCLUSIONS

1
~U exp( a Eq'm)"q)’ We have derived an expression for the dielectric tensor
(53 of a dilute to semidilute suspension of optically anisotropic
nanotubes. The result is expressed as a power series in the
volume fraction, optical anisotropy, and optical contrast of
the suspension. Within this framework, the connection to de-
polarized light scattering has been established and the results
have been generalized to include tube deformation of arbi-
trary origin. A variety of rheo-optical datdight-scattering,
optical microscopy, birefringence, and dichrogifar flow-
2.2 1,2 2 1.2 2 ing polymer-dispersed carbon nanotube suspensions will be
Ifi(@I"~vrex = szler(N o saen(DL, 54 analyzed elsewhere. By incorporating an independent mea-
which when combined with Eq$27) and(28) is sufficientto ~ sure of the shape of the tubes and the orientational distribu-
include tube deformation in the Gaussian approximation, altion function,p(#) (from stroboscopic video microscopy for
of the previous results being generalized the substitutions MWNTs or small-angle neutron scattering for SWNTs, for
L2_>(L§ﬁ> and a2—><a§ﬁ>. example, we expect to obtain quantitative information about
As a specific example we consider the Kratky—Porodthe optical anisotropy of carbon nanotubes that can then be
model of a semiflexible chain with no torsional strésgjith ~ used to quantify their orientation in flowing viscoelastic
the Hamiltonian polymer melts. Although the results are derived in the dilute
and semidilute limits, the results ca? be applied to r7210re con-
K A K centrated suspensions, for whictL= (4/7) ¢po(L/d)>1
H=" EJZZ - Mj-1=— 5,-22 coso; , 59 andndL?= (4/7) ¢o(LId)>1, by including interparticle cor-
relations in a derivation of an effective form contribution that
whered, = cos (f;- A, ;) is the bending angle between suc- incorporates structuré.
cessive orientation vectorg, is the bending modulus, and We conclude by noting the paucity of optical anisotropy
the persistence length & = «/kgT. The orientational corre-  data on carbon nanotubes. In part, this reflects the scarcity of
lation function decays exponentially with distance along theyell-dispersed, well-aligned nanotube materials. For the sole
chainvia® purpose of measuring this anisotropy, elongational flows will
<ﬁ._ﬁ_>:efb|ifj|/§p (56) yield better fiber alignment than shearing flows, and one
i . L oS L . ;
could envision spinning composite fibers in noncrystalline
We assume that the chain is stiff, so that body direétis  polymer matrices that could then be optically probed at a
approximately equivalent t8/Ry, where variety of wavelengths to map out the full dielectric spec-

1
f|(Q)=U|<1_EQ'<”>|'Q+---

which depends on the moment tensor{rr)
=vflfvldr(rr). By symmetry, this will have the same prin-
cipal axes agf;f;);, the dominant eigenvector being the
body director, ;. Denoting the large eigenvalue
(1/12)L24(1) and the small eigenvalue (1/3(), a tube
with its body director aligned with the axis has
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trum. All of the earlier results would directly apply to the optically anisotropic particles too small to scatter light. The second term in
analysis of such data. The formalism derived here might also Ed. (12 does not appear in the analysis of Onuki and Drai Onuki and

prove useful in optical flow studies of any type of dilute or M. Doi, J. Chem. Phys85, 1190(1986] because it is of higher order in
products of the optical contrast, anisotropy, and volume fraction when

semidilute rod-like partlcle or fiber suspension, such as actin there is segmental correlation, which will be quite strong for carbon nano-

filaments, tobacco mosaic virus, worm-like micelles, and he- tubes. We retain it here for a theoretical description that is rigorous to

matite rods’*?°in particular, which should also exhibit in-  O(5&?).

trinsic absorption. loThe transformation from the notation used in E. K. Hobbie, H. Wang, H.
Kim, C. Han, E. Grulke, and J. Obrz{see Ref. 5to that used here is
madevia the substitutionsy,— (o, — &5)/es anda, —(a, —&g)/e5 in the
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